To build element equation for the 1-D elliptic equation using the 3-Node line (P2
).
More...


Public Member Functions | |
Laplace1DL3 (Mesh &ms, Vect< real_t > &u) | |
Laplace1DL3 (Element *el) | |
Constructor for an element. | |
~Laplace1DL3 () | |
Destructor. | |
void | Matrix (real_t coef=1.) |
Add finite element matrix to left hand side. More... | |
void | BodyRHS (const Vect< double > &f) |
Add Right-hand side contribution. More... | |
void | BoundaryRHS (int n, real_t p) |
Add Neumann contribution to Right-Hand Side. More... | |
void | setTraction (real_t f, int lr) |
Set Traction data. More... | |
int | run () |
void | updateBC (const Element &el, const Vect< real_t > &bc) |
Update Right-Hand side by taking into account essential boundary conditions. More... | |
void | updateBC (const Vect< real_t > &bc) |
Update Right-Hand side by taking into account essential boundary conditions. More... | |
void | DiagBC (int dof_type=NODE_DOF, int dof=0) |
Update element matrix to impose bc by diagonalization technique. More... | |
void | LocalNodeVector (Vect< real_t > &b) |
Localize Element Vector from a Vect instance. More... | |
void | ElementNodeVector (const Vect< real_t > &b, LocalVect< real_t, NEE_ > &be) |
Localize Element Vector from a Vect instance. More... | |
void | ElementNodeVector (const Vect< real_t > &b, LocalVect< real_t, NEN_ > &be, int dof) |
Localize Element Vector from a Vect instance. More... | |
void | ElementNodeVectorSingleDOF (const Vect< real_t > &b, LocalVect< real_t, NEN_ > &be) |
Localize Element Vector from a Vect instance. More... | |
void | ElementSideVector (const Vect< real_t > &b, LocalVect< real_t, NSE_ > &be) |
Localize Element Vector from a Vect instance. More... | |
void | ElementVector (const Vect< real_t > &b, int dof_type=NODE_FIELD, int flag=0) |
Localize Element Vector. More... | |
void | SideVector (const Vect< real_t > &b) |
Localize Side Vector. More... | |
void | ElementNodeCoordinates () |
Localize coordinates of element nodes. More... | |
void | SideNodeCoordinates () |
Localize coordinates of side nodes. More... | |
void | ElementAssembly (Matrix< real_t > *A) |
Assemble element matrix into global one. More... | |
void | ElementAssembly (SkSMatrix< real_t > &A) |
Assemble element matrix into global one. More... | |
void | ElementAssembly (SkMatrix< real_t > &A) |
Assemble element matrix into global one. More... | |
void | ElementAssembly (SpMatrix< real_t > &A) |
Assemble element matrix into global one. More... | |
void | ElementAssembly (TrMatrix< real_t > &A) |
Assemble element matrix into global one. More... | |
void | ElementAssembly (Vect< real_t > &v) |
Assemble element vector into global one. More... | |
void | DGElementAssembly (Matrix< real_t > *A) |
Assemble element matrix into global one for the Discontinuous Galerkin approximation. More... | |
void | DGElementAssembly (SkSMatrix< real_t > &A) |
Assemble element matrix into global one for the Discontinuous Galerkin approximation. More... | |
void | DGElementAssembly (SkMatrix< real_t > &A) |
Assemble element matrix into global one for the Discontinuous Galerkin approximation. More... | |
void | DGElementAssembly (SpMatrix< real_t > &A) |
Assemble element matrix into global one for the Discontinuous Galerkin approximation. More... | |
void | DGElementAssembly (TrMatrix< real_t > &A) |
Assemble element matrix into global one for the Discontinuous Galerkin approximation. More... | |
void | SideAssembly (Matrix< real_t > *A) |
Assemble side (edge or face) matrix into global one. More... | |
void | SideAssembly (SkSMatrix< real_t > &A) |
Assemble side (edge or face) matrix into global one. More... | |
void | SideAssembly (SkMatrix< real_t > &A) |
Assemble side (edge or face) matrix into global one. More... | |
void | SideAssembly (SpMatrix< real_t > &A) |
Assemble side (edge or face) matrix into global one. More... | |
void | SideAssembly (Vect< real_t > &v) |
Assemble side (edge or face) vector into global one. More... | |
void | AxbAssembly (const Element &el, const Vect< real_t > &x, Vect< real_t > &b) |
Assemble product of element matrix by element vector into global vector. More... | |
void | AxbAssembly (const Side &sd, const Vect< real_t > &x, Vect< real_t > &b) |
Assemble product of side matrix by side vector into global vector. More... | |
size_t | getNbNodes () const |
Return number of element nodes. | |
size_t | getNbEq () const |
Return number of element equations. | |
real_t * | A () |
Return element matrix as a C-array. | |
real_t * | sA () |
Return side matrix as a C-array. | |
real_t * | b () |
Return element right-hand side as a C-array. | |
real_t * | sb () |
Return side right-hand side as a C-array. | |
real_t * | Prev () |
Return element matrix as a C-array. | |
LocalMatrix< real_t, NEE_, NEE_ > & | EA () |
Return element matrix as a LocalMatrix instance. | |
LocalMatrix< real_t, NSE_, NSE_ > & | SA () |
Return side matrix as a LocalMatrix instance. | |
LocalVect< real_t, NEE_ > & | Eb () |
Return element right-hand side as a LocalVect instance. | |
LocalVect< real_t, NEE_ > & | Ep () |
Return element matrix as a C-array. | |
void | setInitialSolution (const Vect< real_t > &u) |
Set initial solution (previous time step) | |
real_t | setMaterialProperty (const string &exp, const string &prop) |
Define a material property by an algebraic expression. More... | |
void | setMesh (class Mesh &m) |
Define mesh and renumber DOFs after removing imposed ones. | |
Mesh & | getMesh () const |
Return reference to Mesh instance. More... | |
LinearSolver< real_t > & | getLinearSolver () |
Return reference to linear solver instance. | |
void | setSolver (int ls, int pc=IDENT_PREC) |
Choose solver for the linear system. More... | |
int | solveEigenProblem (int nb_eigv, bool g=false) |
Compute eigenvalues and eigenvectors. More... | |
real_t | getEigenValue (int n) const |
Return the n-th eigenvalue. More... | |
void | getEigenVector (int n, Vect< real_t > &v) const |
Store the eigenvector corresponding to a given eigenvalue. More... | |
class Eigen & | getEigenSolver () |
Return reference to eigenproblem solver. | |
Protected Member Functions | |
void | Init (const Element *el) |
Set element arrays to zero. | |
void | Init (const Side *sd) |
Set side arrays to zero. | |
Detailed Description
To build element equation for the 1-D elliptic equation using the 3-Node line (P2
).
Constructor & Destructor Documentation
Laplace1DL3 | ( | Mesh & | ms, |
Vect< real_t > & | u | ||
) |
Member Function Documentation
Add finite element matrix to left hand side.
- Parameters
-
[in] coef Value to multiply by the added matrix
void BodyRHS | ( | const Vect< double > & | f | ) |
Add Right-hand side contribution.
- Parameters
-
[in] f Vector of right-hand side of the Poisson equation at nodes
void BoundaryRHS | ( | int | n, |
real_t | p | ||
) |
Add Neumann contribution to Right-Hand Side.
- Parameters
-
[in] n Parameter to select equal to 0
if the condition is at the left end of the domain and different if it is at the right of it[in] p Value of flux to add
- Note
- This member function is to be invoked only for the first or last element
void setTraction | ( | real_t | f, |
int | lr | ||
) |
Set Traction data.
- Parameters
-
[in] f Value of traction (Neumann boundary condition) [in] lr Option to choose location of the traction ( -1
: Left end,1
: Right end)
int run | ( | ) |
Run solution procedure This function is to be called when the constructor Laplace1DL2(mesh,u) is used.
- Returns
- return code for the solution of the linear system
Update Right-Hand side by taking into account essential boundary conditions.
- Parameters
-
[in] el Reference to current element instance [in] bc Vector that contains imposed values at all DOFs
Update Right-Hand side by taking into account essential boundary conditions.
- Parameters
-
[in] bc Vector that contains imposed values at all DOFs
- Remarks
- The current element is pointed by
_theElement
|
inherited |
Update element matrix to impose bc by diagonalization technique.
- Parameters
-
[in] dof_type DOF type option. To choose among the enumerated values: -
NODE_FIELD
, DOFs are supported by nodes [Default] -
ELEMENT_FIELD
, DOFs are supported by elements -
SIDE_FIELD
, DOFs are supported by sides
[in] dof DOF setting: -
= 0
, All DOFs are taken into account [Default] -
!= 0
, Only DOF No.dof
is handled in the system
-
Localize Element Vector from a Vect instance.
- Parameters
-
[in] b Reference to global vector to be localized. The resulting local vector can be accessed by attribute ePrev. This member function is to be used if a constructor with Element was invoked.
Localize Element Vector from a Vect instance.
- Parameters
-
[in] b Global vector to be localized. [out] be Local vector, the length of which is the total number of element equations.
- Remarks
- All degrees of freedom are transferred to the local vector
|
inherited |
Localize Element Vector from a Vect instance.
- Parameters
-
[in] b Global vector to be localized. [out] be Local vector, the length of which is the total number of element equations. [in] dof Degree of freedom to transfer to the local vector
- Remarks
- Only yhe dega dof is transferred to the local vector
|
inherited |
Localize Element Vector from a Vect instance.
- Parameters
-
[in] b Global vector to be localized. [out] be Local vector, the length of which is the total number of element equations.
- Remarks
- Vector
b
is assumed to contain only one degree of freedom by node.
Localize Element Vector from a Vect instance.
- Parameters
-
[in] b Global vector to be localized. [out] be Local vector, the length of which is
Localize Element Vector.
- Parameters
-
[in] b Global vector to be localized [in] dof_type DOF type option. To choose among the enumerated values: -
NODE_FIELD
, DOFs are supported by nodes [Default] -
ELEMENT_FIELD
, DOFs are supported by elements -
SIDE_FIELD
, DOFs are supported by sides
[in] flag Option to set: -
= 0
, All DOFs are taken into account [Default] -
!= 0
, Only DOF numberdof
is handled in the system
ePrev
. -
- Remarks
- This member function is to be used if a constructor with Element was invoked. It uses the Element pointer
_theElement
Localize Side Vector.
- Parameters
-
[in] b Global vector to be localized -
NODE_FIELD
, DOFs are supported by nodes [ default ] -
ELEMENT_FIELD
, DOFs are supported by elements -
SIDE_FIELD
, DOFs are supported by sides
ePrev
. -
- Remarks
- This member function is to be used if a constructor with Side was invoked. It uses the Side pointer
_theSide
|
inherited |
Localize coordinates of element nodes.
Coordinates are stored in array _x[0], _x[1], ...
which are instances of class Point<real_t>
- Remarks
- This member function uses the Side pointer
_theSide
|
inherited |
Localize coordinates of side nodes.
Coordinates are stored in array _x[0], _x[1], ...
which are instances of class Point<real_t>
- Remarks
- This member function uses the Element pointer
_theElement
Assemble element matrix into global one.
- Parameters
-
A Pointer to global matrix (abstract class: can be any of classes SkSMatrix, SkMatrix, SpMatrix)
- Warning
- The element pointer is given by the global variable
theElement
Assemble element matrix into global one.
- Parameters
-
A Global matrix stored as an SkSMatrix instance
- Warning
- The element pointer is given by the global variable
theElement
Assemble element matrix into global one.
- Parameters
-
[in] A Global matrix stored as an SkMatrix instance
- Warning
- The element pointer is given by the global variable
theElement
Assemble element matrix into global one.
- Parameters
-
[in] A Global matrix stored as an SpMatrix instance
- Warning
- The element pointer is given by the global variable
theElement
Assemble element matrix into global one.
- Parameters
-
[in] A Global matrix stored as an TrMatrix instance
- Warning
- The element pointer is given by the global variable
theElement
Assemble element vector into global one.
- Parameters
-
[in] v Global vector (Vect instance)
- Warning
- The element pointer is given by the global variable
theElement
Assemble element matrix into global one for the Discontinuous Galerkin approximation.
- Parameters
-
A Pointer to global matrix (abstract class: can be any of classes SkSMatrix, SkMatrix, SpMatrix)
- Warning
- The element pointer is given by the global variable
theElement
Assemble element matrix into global one for the Discontinuous Galerkin approximation.
- Parameters
-
A Global matrix stored as an SkSMatrix instance
- Warning
- The element pointer is given by the global variable
theElement
Assemble element matrix into global one for the Discontinuous Galerkin approximation.
- Parameters
-
[in] A Global matrix stored as an SkMatrix instance
- Warning
- The element pointer is given by the global variable
theElement
Assemble element matrix into global one for the Discontinuous Galerkin approximation.
- Parameters
-
[in] A Global matrix stored as an SpMatrix instance
- Warning
- The element pointer is given by the global variable
theElement
Assemble element matrix into global one for the Discontinuous Galerkin approximation.
- Parameters
-
[in] A Global matrix stored as an TrMatrix instance
- Warning
- The element pointer is given by the global variable
theElement
Assemble side (edge or face) matrix into global one.
- Parameters
-
A Pointer to global matrix (abstract class: can be any of classes SkSMatrix, SkMatrix, SpMatrix)
- Warning
- The side pointer is given by the global variable
theSide
Assemble side (edge or face) matrix into global one.
- Parameters
-
[in] A Global matrix stored as an SkSMatrix instance
- Warning
- The side pointer is given by the global variable
theSide
Assemble side (edge or face) matrix into global one.
- Parameters
-
[in] A Global matrix stored as an SkMatrix instance
- Warning
- The side pointer is given by the global variable
theSide
Assemble side (edge or face) matrix into global one.
- Parameters
-
[in] A Global matrix stored as an SpMatrix instance
- Warning
- The side pointer is given by the global variable
theSide
Assemble side (edge or face) vector into global one.
- Parameters
-
[in] v Global vector (Vect instance)
- Warning
- The side pointer is given by the global variable
theSide
Assemble product of element matrix by element vector into global vector.
- Parameters
-
[in] el Reference to Element instance [in] x Global vector to multiply by (Vect instance) [out] b Global vector to add (Vect instance)
Assemble product of side matrix by side vector into global vector.
- Parameters
-
[in] sd Reference to Side instance [in] x Global vector to multiply by (Vect instance) [out] b Global vector (Vect instance)
|
inherited |
Define a material property by an algebraic expression.
- Parameters
-
[in] exp Algebraic expression [in] prop Property name
- Returns
- Return value in expression evaluation:
-
=0
, Normal evaluation -
!=0
, An error message is displayed
-
|
inherited |
Return reference to Mesh instance.
- Returns
- Reference to Mesh instance
|
inherited |
Choose solver for the linear system.
- Parameters
-
[in] ls Solver of the linear system. To choose among the enumerated values: DIRECT_SOLVER
,CG_SOLVER
,GMRES_SOLVER
-
DIRECT_SOLVER
, Use a facorization solver [default] -
CG_SOLVER
, Conjugate Gradient iterative solver -
CGS_SOLVER
, Squared Conjugate Gradient iterative solver -
BICG_SOLVER
, BiConjugate Gradient iterative solver -
BICG_STAB_SOLVER
, BiConjugate Gradient Stabilized iterative solver -
GMRES_SOLVER
, GMRES iterative solver -
QMR_SOLVER
, QMR iterative solver
[in] pc Preconditioner to associate to the iterative solver. If the direct solver was chosen for the first argument this argument is not used. Otherwise choose among the enumerated values: -
IDENT_PREC
, Identity preconditioner (no preconditioning [default]) -
DIAG_PREC
, Diagonal preconditioner -
ILU_PREC
, Incomplete LU factorization preconditioner
-
|
inherited |
Compute eigenvalues and eigenvectors.
Eigenvalues and vectors are computed using the Bathe's subspace iteration method.
- Parameters
-
[in] nb_eigv Number of eigenvalues to compute [in] g Option to choose whether to solve a generalized eigenvalue problem (true) or a standard one (false). The generalized eigenvalue problem corresponds to the case where a consistent mass matrix (rather than a lumped one) is computed. Default value is false.
|
inherited |
Return the n-th eigenvalue.
This functions works only if the member function getEigen was called with an argument nb_eigv
greater or equal to n
. Otherwise it returns 0
.