
An Object Oriented Finite Element Library

User’s Guide

Release 4.0.0

Rachid Touzani
Laboratoire de Mathématiques Blaise Pascal
Université Clermont Auvergne, France
e-mail: rachid.touzani@uca.fr

i

ii

Contents

1 Generalities 2

2 A Tutorial 3

2.1 A One Dimensional Problem . 3

2.1.1 The main code . 3

2.1.2 An Example . 5

2.2 A Two–dimensional steady–state diffusion equation 5

2.2.1 The Finite Element Code . 5

2.2.2 A finite element mesh . 7

2.3 Using an iterative solver . 7

2.3.1 The Finite Element Code . 7

2.3.2 A test . 9

2.4 A time dependent problem . 9

2.4.1 The Finite Element Code . 9

2.4.2 A test . 12

2.5 An optimization problem . 12

2.5.1 The Finite Element Code . 12

2.5.2 A test . 14

2.6 Using Project File . 15

2.7 Using mesh generator . 16

2.8 Using file converters . 17

2.8.1 Using cmesh . 17

2.8.2 Using cfield . 19

3 File Formats 20

3.1 Element: Project . 20

3.2 Element: Domain . 23

3.3 Element: Mesh . 24

3.4 Element: Prescription . 26

3.5 Element: Material . 27

3.6 Element: Field . 28

3.7 Element: Function . 29

4 Debugging 30

4.1 Debugging directives . 30

Index 30

iv

v

We illustrate in this document various ways for using the library OFELI. The simplest level is to
use an already prepared finite element code that makes use of OFELI. The most advanced level is
the one that consists in developing specific classes for one’s own problem and using utility classes
in OFELI.

1

1 Generalities

It is useful to recall that OFELI is not itself a finite element code but a toolkit for developing finite
element programs for specific applications. The OFELI package contains however some more
sophisticated applications that help solving particular problems in several fields such as Thermal
Analysis, Fluid Flow, Solid Mechanics and Electromagnetics. This makes possible for a beginner
to start with simple codes or better to imitate what is already developed in order to develop new
codes.

This user’s guide is organized as follows : a first part consists of a tutorial divided into lessons
of ascending complexity. Here various type of finite element codes are described as well as some
useful aspects like using data files and file converters. The second part describes how to use OFELI
as a toolbox to develop one’s own codes. That is, we explain through a significant application the
general methodology to write codes. The third part shows how to develop a new equation.

2 A Tutorial

We describe in this part some examples of finite element codes that make use of the OFELI library.
We describe in detail the source files and associated user defined functions.

1. Lesson 1: A One–dimensional problem

2. Lesson 2: A Two–dimensional steady–state diffusion equation using a 3–Node triangle. The
linear system of equations is solved by a direct method.

3. Lesson 3: The same problem using an iterative method.

4. Lesson 4: A Two–dimensional time dependent diffusion equation using a 3–Node triangle
and the backward Euler scheme.

5. Lesson 5: A Two–dimensional steady–state diffusion equation solved as an unconstrained
optimization problem.

6. Lesson 6: How to use a project file.

7. Lesson 7: How to use the 2–D mesh generator.

8. Lesson 8: How to use file converters.

As it can be seen, the lessons are progressive, i.e. it is preferable to learn them in increasing order.

2.1 A One Dimensional Problem

This lesson concerns a simple one–dimensional two–point boundary value problem.

2.1.1 The main code

Let us examine in detail the source file.

– We start by including the header file OFELI.h that itself includes all kernel class definitions.

#include "OFELI.h"

– The OFELI library is embedded in namespace called OFELI.

using namespace OFELI;

– Our program has arguments that will described later.

int main(int argc, char *argv[])

{

– Lmin and Lmax are the ends of the interval in which the problem is defined. Here we have
fixed their respective values at 0 and 1. N is the number of finite elements. Its default value
is 10.

double L=1;

int N=10;

– The OFELI function banner outputs the official banner of the library:

banner();

– N is the program argument (if this one is present).

if (argc > 1)

N = atoi(argv[1]);

– We now declare an instance of class Mesh with the appropriate constructor.

Mesh ms(L,N);

– We denote by NbN the number of unknowns, the solution being prescribed at x=0 and then
we print out the mesh.

int NbN = N+1;

cout << ms;

– We declare an instance of class TrMatrix<double> for the tridiagonal matrix, with size NbN

and an instance of class Vect<double> for the right–hand side and the solution.

TrMatrix<double> A(NbN);

Vect<double> b(NbN);

– In order to test the code, we choose an exact solution: We set for right-hand side the function
f(x) = 20(1 − 20x2)e−10x2

and the boundary conditions u(0) = u(1) = 0. This yields

the solution u(x) = e−10x2

+ x(1 − e−10) − 1. To implement this without implementing
additional functions we resort to the OFELI’s parser. For this, the member function set
of class Vect<double> enables assigning regular expressions to nodes in function of their
coordinates. The variables are x, y and z.

b.set(ms,"20*(1-20*x*x)*exp(-10*x*x)");

– h is the mesh size (length of an element). We can compute the right-hand side of the linear
system by multiplying it by the mesh size.

double h = L/double(N);

b *= h;

– We now build up the matrix and the right-hand side. Note that we skip, for the moment, the
first and the last lines for boundary condition treatment. Here x is the i–th node coordinate.

for (int i=2; i<NbN; i++) {

A(i,i) = 2./h;

A(i,i+1) = -1./h;

A(i,i-1) = -1./h;

}

– We modify the first and last equation in order to take account for boundary conditions.

A(1,1) = 1.; A(1,2) = 0.; b(1) = 0;

A(NbN,NbN) = 1.; A(NbN-1,NbN) = 0.; b(NbN) = 0;

– The linear system is solved.

A.solve(b);

– We finally output the solution, calculate the error at each node and output it. Note that
the exact solution vector use also the parser.

cout << "\nSolution :\n" << b;

Vect<double> sol(NbN);

sol.set(ms,"exp(-10*x*x)+x*(1-exp(-10))-1");

cout << "Error = " << (b-sol).getNormMax() << endl;

4

– We can now end the program.

return 0;

}

2.1.2 An Example

If you execute the program without any argument, you will obtain as output:

M E S H D A T A

===================

Space Dimension : 1

Number of nodes : 11

Number of elements : 10

Number of sides : 0

Solution :

1 0.00000000e+000

2 1.71545445e-003

3 -1.41343078e-001

4 -3.11214412e-001

5 -4.16034601e-001

6 -4.32020322e-001

7 -3.82338044e-001

8 -2.98774350e-001

9 -2.02104670e-001

10 -1.01513714e-001

11 0.00000000e+000

Error = 1.79492789e-002

2.2 A Two–dimensional steady–state diffusion equation

We consider here a 2–D steady state boundary value problem. We solve a Poisson equation
(Diffusion) with “simple” data. Concerning boundary conditions, we impose a Dirichlet (essential)
boundary condition on a portion of the domain and a homogeneous Neumann (natural) condition
on the remaining boundary. Note that owing to the variational formulation the Neumann condition
is implicit (We have nothing to do for it).

2.2.1 The Finite Element Code

Here is a description of the source code.

– As usual we start by including the principal header file and the file Therm.h that includes
all classes related to heat transfer problems.

#include "OFELI.h"

#include "Therm.h"

using namespace OFELI;

– Our program will have as argument the mesh file name.

int main(int argc, char *argv[])

{

5

– We output the OFELI banner and get the program argument

banner();

if (argc <= 1) {

cout << "Usage : lesson2 <mesh_file>" << endl;

exit(1);

}

– We construct an instance of class Mesh by giving the name of mesh file. Note that

Mesh ms(argv[1]);

– The problem matrix is symmetric and will be stored in skyline format (thus using class
SkSMatrix<double>)

SkSMatrix<double> A(ms);

– Vectors b and bc (as instances of class Vect<double>) will contain the right-hand side and
the solution, and imposed boundary conditions at nodes:

Vect<double> b(ms.getNbDOF()), bc(ms.getNbDOF());

– We assign imposed boundary conditions to vector bc by using member function setNodeBC

which allows using an interpreted function of node coordinates: We prescribe the function y
to nodes with code 1.

bc.setNodeBC(ms,1,"y");

– We now start building the linear system. For this, we have to implement a loop over
all element meshes by using member functions TopElement() and getElement(). The
returned pointer theElement enables access to current element data. The OFELI library
defines the macro MeshElements(ms) that stands for a shorthand for the line

for (ms.topElement(); (theElement=ms.getElement());)

For each element, we construct an instance of class DC2DT3 for diffusion-convection problems
in 2-D using 3-node triangles. The member function Diffusion calculates the contribution
to element matrix diffusion term. We then assemble matrix and right-hand side (which is 0
here).

MeshElements(ms) {

DC2DT3 eq(theElement);

eq.Diffusion();

eq.ElementAssembly(A);

eq.ElementAssembly(b);

}

Of course, in the present case, assembling the right-hand side is actually useless.

– Once the linear system is assembled, Dirichlet boundary conditions are imposed by a penalty
technique. This is implemented via the function Prescribe, member of all matrix classes.

A.Prescribe(ms,b,bc);

– Solution is obtained by factorizing and backsubstituting:

A.solve(b);

Vector b contains now the solution.

– We finally output the solution and end the program.

6

cout << "\nSolution:\n" << b;

return 0;

}

2.2.2 A finite element mesh

To test this program we use a finite element mesh of a rectangle [0,3]x[0,1]. The imposed
boundary conditions are

u(x, 0) = 0, u(x, 1) = 1, 0 < x < 3.

Homogeneous Neumann boundary conditions are “imposed” on the portions x = 0 and x = 3.
The solution is then

u(x, y) = y.

The mesh file is called test.xml (included in the package). Note, in this file, that a code equal
to 0 is associated to nodes with y=0 and 1 is associated to nodes with y=1. The lines starting
with BC give the associated values to these codes, the case of value 0 is by default.

You can now execute the code to obtain the exact solution.

2.3 Using an iterative solver

We consider the same example as in Lesson 2 with the following modifications :

1. We solve the linear system using the Conjugate Gradient method.

2. In view of an iterative method we prefer to use, to handle boundary conditions, a classical
substitution method rather than the penalty formulation.

3. We use a defined material by giving its name in the mesh file.

2.3.1 The Finite Element Code

The main program

Here is a description of the source code.

– We start like in Lesson 2.

#include "OFELI.h"

#include "Therm.h"

using namespace OFELI;

int main(int argc, char *argv[])

{

– As usual, we declare an instance of class Mesh.

Mesh ms(argv[1]);

banner();

– We expand the argument of the program :

if (argc <= 1) {

cout << "Usage: lesson3 <mesh_file>" << endl;

exit(1);

}

– After reading mesh data we note that handling boundary conditions by elimination requires
renumbering the equations. For this, we invoke the member class NumberEquations of
class Mesh.

7

Mesh ms(argv[1]);

ms.NumberEquations();

– We store the matrix in a sparse format , thus using class SpMatrix<double>.

SpMatrix<double> A(ms);

– Vectors b and x will store respectively the right-hand side and the solution. Note that, since
imposed degrees of freedom are eliminated from the equations, the vectors have as sizes the
actual number of equations.

Vect<double> b(ms.getNbEq()), x(ms.getNbEq());

– The vector bc, instance of class Vect<double> will store imposed boundary conditions. It
is constructed in the same way as in Lesson 2.

BCVect<double> bc(ms.getNbDOF());

– We construct the linear system of equations just as in Lesson 2. The difference here is
that element right-hand sides need to be updated to take into account imposed boundary
conditions at element level. This is necessary when using an elimination technique for
boundary conditions. The member function UpdateBC is then used before assembly.

MeshElements(ms) {

DC2DT3 eq(theElement);

eq.Diffusion();

eq.updateBC(bc);

eq.ElementAssembly(A);

eq.ElementAssembly(b);

}

– We will use a preconditioned Conjugate Gradient . As an example, we use here the ILU
(Incomplete LU factorization) preconditioner . This is realized by calling the function CG to
run the conjugate gradient. We impose a tolerance of 10−8.

double toler = 1.e-8;

int nb_it = CG(a,Prec<double>(A,ILU_PREC),b,x,1000,toler,2);

Note that CG returns the number of performed iterations.

– We print out this number of iterations.

cout << "Nb. of iterations: " << nb_it << endl;

– We can incorporate boundary conditions into the solution vector.

Vect<double> u(ms.getNbDOF());

u.insertBC(ms,x,bc);

– We finally end the program.

return 0;

}

How to declare a material ?

This is very simple: in the mesh data file, all elements have, in the present example, the code 1. If
we say nothing, then a generic material (precisely called GenericMaterial with default properties
is used. Otherwise, we can assign, in the mesh file a material, here Aluminium to this code, by
the line

<Material>1 Aluminium</Material>

8

This line must be given after all elements lines. Note that the file Aluminium.md must be present
in the material’s directory. We are now ready to test the package.

2.3.2 A test

We use here a finer mesh than in Lesson 2 and add the line defining the material. We obtain the
same solution as Lesson 2 after 15 iterations.

2.4 A time dependent problem

We introduce, in this lesson, new aspects of OFELI programming :

1. We consider a time-dependent heat transfer problem that we solve by Backward Euler time
stepping scheme.

2. We consider the case of Neumann Boundary conditions.

3. Data (problem parameters) are introduced by a data file using IPF.

2.4.1 The Finite Element Code

The main program

Here is a description of the source code.

– We start, as usual, by including required headers and naming the appropriate namespace.

#include "OFELI.h"

#include "Therm.h"

#include "User.h"

using namespace OFELI;

– The program will have as argument the name of the parameter data file :

int main(int argc, char *argv[])

{

– We expand program arguments and declare an instance of class IPF for parameter file :

if (argc <= 1) {

cout << "Usage: lesson4 <parameter_file>" << endl;

exit(1)

}

IPF data(argv[1]);

– Parameters max time (maximum time value) and deltat (time step) are retrieved as IPF

class members.

double max_time = data.getMaxTime();

double deltat = data.getTimeStep();

– The mesh instance is constructed by giving the mesh file.

Mesh ms(data.getMeshFile());

– In the present example, we introduce boundary conditions through a user defined class. This
may be optional for Dirichlet conditions but necessary for Neumann ones.

User ud(ms);

Implementation of class User will be given later.

9

– We declare matrix and vector data: first, the matrix A is declared as instance of class
SkSMatrix . The vectors b, u and bc will contain respectively, alternatively the right-
hand side and the current solution, the previous solution and prescribed Dirichlet boundary
conditions.

SkSMatrix<double> A(ms);

Vect<double> b(ms.getNbDOF()), u(ms.getNbDOF()), bc(ms.getNbDOF());

– Since, we are dealing with a transient problem, we need initial data. This is retrieved from
class member setInitialData of class User:

ud.setInitialData(u);

– Before starting time stepping loop, we calculate the number of time steps and initialize time:

int nb_step = int(max_time/deltat);

double time = 0;

– We start a loop over time steps :

for (int step=1; step<=nb_step; step++) {

– The first thing to do here is to update time value and initialize the right-hand side to zero
since this one will be assembled.

time += deltat;

b = 0;

– We next transmit the user data class instance ud the time value:

ud.setTime(time);

– In order to deal with a problem with time-dependent boundary condition we re-fill vector bc
at this level.

ud.setDBC(bc);

– We write a loop over finite elements as in the previous lessons:

MeshElements(ms) {

– We use here class DC2DT3 with the constructor that involves time. Instance eq will then be
used to build matrix and right-hand side.

DC2DT3 eq(theElement,u,time);

– The element matrix is constructed with capacity term (chosen here to be lumped) and
diffusion term :

eq.LCapacity(1./deltat);

eq.Diffusion();

Note that capacity matrix is multiplied by the inverse of time step. This is necessary to
implement the backward Euler scheme.

– We assemble matrix and right-hand side (useless for the present example). Note that, since
the matrix does not depend on time, it is assembled once and factorized once.

if (step==1)

eq.ElementAssembly(A);

eq.ElementAssembly(b);

}

The loop on elements is closed.

10

– To deal with Neumann boundary conditions (involving boundary integrals), we have to loop
over given sides. The loop looks like the one over elements :

MeshSides(ms) {

– For each side (pointed by eq) we invoke a constructor that involves sides.

DC2DT3 eq(theSide,u,time);

– We fill the side vector using the instance ud of class User. The function BoundaryRHS

calculates the side integral.

eq.BoundaryRHS(ud);

– We assemble side vectors just like for elements and close the loop.

eq.SideAssembly(b);

}

– Once the linear system is assembled, we impose Dirichlet boundary conditions by a penalty
techniques implemented in member function Prescribe:

A.Prescribe(ms,b,bc,step-1);

– As said before, factorization is carried out at the first time step only. Obviously, solution is
called each time step.

A.solve(b);

– Now, vector b contains the solution. We copy it to u to store it as a previous solution.

u = b;

– We may want to output the solution each time step:

cout << "\nSolution for time: " << time << endl << u;

}

return 0;

}

and then close the time stepping loop and the program.

A User defined class

We have now to implement class User that defines boundary conditions, initial conditions, . . . The
class is defined in file User.h.

– Of course, we start by including file OFELI. and invoking the namespace :

#include "OFELI.h"

using namespace OFELI;

– Class User inherits from abstract class UserData.

class User : public UserData<double> {

– This class has only public members and no attributes.

public :

– We have a constructor that provides the mesh to the class : nothing to do, the parent class
does the job for you.

User(Mesh &mesh) : UserData<double>(mesh) { ; }

11

– We define member function to give a value to prescribe for boundary condition in function
of node code, node coordinates, time value and degree of freedom : Here, we impose that
a code 2 imposes the value 1.0. Any other code will impose the default value 0.0.

double BoundaryCondition(const Point<double> &x, int code,

double time=0., size_t dof=1)

{

double ret = 0.0;

if (code == 2)

ret = 1.0;

return ret;

}

– The same scheme works for Neumann boundary condition :

double SurfaceForce(const Point<double> &x, int code,

double time, size_t dof)

{

if (code)

return 1.0;

else

return 0.0;

}

– The class definition ends here.

};

– Let us finally note that since no implementation is given for initial condition, the default one
is 0.0 for each degree of freedom.

2.4.2 A test

We use here exactly the same mesh file as in the previous lesson. Of course, we obtain the same
solution. The convergence is obtained after 3 iterations.

2.5 An optimization problem

The present lesson demonstrates how to use an optimization problem solver. We solve the same
problem as in Lesson 2 as an optimization problem where Dirichlet boundary conditions are con-
sidered as equality constraints. The optimization algorithm is the Truncated Newton algorithm
described in function OptimTN. This is not the best method to solve a Laplace equation, but our
purpose here is to learn how to use this class.

2.5.1 The Finite Element Code

The main program

Here is a description of the source code.

• We start, as usual, by including required headers and naming the appropriate namespace.
We furthermore include the header file of the optimization definition class called Opt.

#include "OFELI.h"

#include "Opt.h"

#include "User.h"

using namespace OFELI;

• The program will have as argument the name of the parameter data file :

12

int main(int argc, char *argv[])

{

• We next declare a pointer to class Element that will be used later.

Element *el;

• We expand program arguments and declare an instance of class IPF for parameter file :

if (argc <= 1) {

cout << "Usage : ex5 <parameter_file>" << endl;

exit(1)

}

IPF data(argv[1]);

• The mesh data file is obtained from a member function of instance data.

Mesh ms(data.getMeshFile());

• We introduce boundary conditions through a user defined class (See Lesson 4).

User ud(ms);

Implementation of class User will be given later.

• n is the number of degrees of freedom.

int n = ms.getNbDOF();

• We declare some vectors: x is the solution vector, vectors low and up will contain for each
degree of freedom upper and lower bound respectively to prescribe and pivot is a vector
that will contains (after optimization) flags to indicate which constraint is reached.

Vect<double> x(n), low(n), up(n);

Vect<int> pivot(n);

• Dirichlet boundary conditions are taken into account as before :

Vect<double> bc(n);

ud.setDBC(bc);

• We start now to properly define the optimization problem. For this, we declare an instance
of a class Opt that is defined separately. The constructor of this class invokes the mesh
instance and the instance ud that will be useful to transmit to the class body or boundary
sources.

Opt theOpt(ms,ud);

• We also initialize the solution to zero :

x = 0;

• As said before, Dirichlet boundary conditions are considered here as equality constraints and
are then incorporated into vectors low and up via a utility function called BCAsConstraint

contained in the mentioned file OptimAux.h.

BCAsConstraint(ms,bc,up,low);

• The function OptimTN can now be invoked to run the optimization algorithm.

OptimTN<Opt>(theOpt,x,low,up,pivot,100,1.e-12,1);

The reader can refer to the function OptimTN to understand the meaning of each argument
of the function.

• If the algorithm has succeeded (which is the case in this example) we can output the solution
and close the program.

13

cout << "\nSolution :\n" << x;

}

A user defined class

We have now to implement class Opt that defines the problem to solve and provides to the objective
function and its gradient. The class is defined in file Opt.h that we study here below.

• We start by including files OFELI.h and Therm.h since we are going to solve a heat transfer
problem. We also invoke the namespace OFELI:

#include "OFELI.h"

#include "Therm.h"

#include "User.h"

using namespace OFELI;

This class will have a constructor that acquires the mesh and the user data instance and
stores pointers to these objects:

class Opt {

public:

Opt(Mesh &ms, User &ud) { _ms = &ms; _ud = &ud; }

• The other public member is the objective function.

void Objective(Vect<double> &x, double &f, Vect<double> &g) {

f = 0.;

g = 0.;

MeshElements(*_ms) {

DC2DT3 eq(theElement);

Vect<double> ge(3);

Vect<double> xe(theElement,x);

f += eq.Energy(xe,*_ud);

eq.EnerGrad(xe,*_ud,ge);

g.Assembly(theElement,ge);

}

}

Note that the arguments of the objective function are necessarily the optimization variable
vector, the objective function to compute and the gradient vector to compute. Here the
class DC2DT3 provides necessary material for optimization purposes. Namely, member func-
tion Energy return the energy value and function EnerGrad calculates the element energy
gradient that needs be assembled into the global vector g.

• It remains to declare the mesh and user data pointers as private attributes of the class and
end the class definition.

private:

Mesh *_ms;

User *_ud;

};

2.5.2 A test

We use here exactly the same mesh file as in the previous lesson. Of course, we obtain the same
solution. The output of the program is the following:

NIT NF CG F GTG

0 1 0 6.00000000e+000 4.00000000e+001

14

1 2 3 1.67852990e+000 4.09059524e+001

2 3 5 1.50042385e+000 4.09106651e+001

3 4 8 1.50001179e+000 4.09109024e+001

4 5 10 1.50000062e+000 4.09109074e+001

5 6 13 1.50000000e+000 4.09109074e+001

6 7 15 1.50000000e+000 4.09109074e+001

7 8 17 1.50000000e+000 4.09109074e+001

8 9 19 1.50000000e+000 4.09109074e+001

Optimal Function Value = 1.5

Solution :

1 1.00000000e+000

2 7.49999986e-001

3 4.99999972e-001

4 2.49999994e-001

5 0.00000000e+000

6 1.00000000e+000

7 7.49999988e-001

8 4.99999982e-001

9 2.49999978e-001

10 0.00000000e+000

11 1.00000000e+000

12 7.49999989e-001

13 4.99999982e-001

14 2.49999978e-001

15 0.00000000e+000

16 1.00000000e+000

17 7.49999986e-001

18 4.99999972e-001

19 2.49999994e-001

20 0.00000000e+000

2.6 Using Project File

We present here an example of use of the Project File. This powerful tool simplifies for a user the
introduction of input data specific to OFELI. The idea is very simple : you have to write a text file
following some simple rules and declare, in your code, an instance of class IPF. Each parameter
introduced in your file is then recovered from a specific member function from your instance. We
shall illustrate hereafter this through an example of a fluid flow code.

Consider the following text file:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<OFELI_File>

<info>

<title></title>

<date>January 1, 2000</date>

<author></author>

</info>

<Project name="test">

<max_time>1000.</max_time>

<time_step>0.01</max_time>

<verbose value="1"/>

<output value="0"/>

15

<save value="0"/>

<tolerance value="1.e-5"/>

<plot value="1000"/>

<init value="1"/>

<parameter label="density">1.0</parameter>

<parameter label="viscosity">0.01</parameter>

<mesh_file value="test.m"/>

<parameter label="output_file" value="test.v"/>

<save_file value="test.sav"/>

</Project>

</OFELI_File>

In the program that uses such a file, we have the following lines:

IPF proj(argv[1]);

double max_time = proj.getMaxTime();

double deltat = proj.getTimeStep();

int verbose = proj.getVerbose();

int output_flag = proj.getOutput();

int save_flag = proj.getSave();

double tol = data.getTolerance();

int plot_flag = proj.getPlot();

double dens = proj.getString("density");

double visc = data.getString("viscosity");

Mesh ms(proj.getMeshFile());

IOField vf(proj.getMeshFile(),data.getString("output_file"),ms,XML_WRITE);

int init_flag = proj.getInit();

In this way, all these parameters are retrieved in a finite element program without any explicit i/o
operation.

2.7 Using mesh generator

The current release of OFELI is not provided within a native mesh generator. For this, we prefer to
add to the package a public domain mesh generator that we have interfaced with OFELI classes.
The included mesh generator is called BAMG. It was developed by an INRIA team.

To generate a 2-D finite element mesh you have to use the class Domain to create a domain and
then call the function BAMG that generates a mesh file in the OFELI XML format. The following
example contained in the OFELI package illustrates a typical usage of the mesh generator. It uses
the program g2m created while you install the utilities

Let us give an example of OFELI XML to generate a domain and then a mesh:

s

<?xml version="1.0" encoding="ISO-8859-1" ?>

<OFELI_File>

<info>

<title>Definition of a domain with a hole</title>

<date>January 1, 2010</date>

<author>R. Touzani</author>

</info>

<Domain dim="2">

<vertex> 0.0 0.0 2 0.10</vertex>

<vertex> 1.0 0.0 2 0.10</vertex>

<vertex> 1.0 1.0 2 0.10</vertex>

<vertex> 0.0 1.0 2 0.10</vertex>

<vertex> 0.4 0.4 1 0.01</vertex>

16

<vertex> 0.6 0.4 1 0.01</vertex>

<vertex> 0.6 0.6 1 0.01</vertex>

<vertex> 0.4 0.6 1 0.01</vertex>

<vertex> 0.1 0.2 1 0.01</vertex>

<vertex> 0.2 0.2 1 0.01</vertex>

<line> 1 2 2 </line>

<line> 2 3 2 </line>

<line> 3 4 2 </line>

<line> 4 1 2 </line>

<line> 5 6 1 </line>

<line> 6 7 1 </line>

<line> 7 8 1 </line>

<line> 8 5 1 </line>

<circle> 9 9 10 1 </circle>

<subdomain> 1 1 10</subdomain>

</Domain>

</OFELI_File>

The above text file enables generating a rectangular domain containing a circular hole. Once this
file is created and called test.dom, we can generate the file hole.m by typing

g2m -d test.dom

Note that all parameters of the command g2m can be obtained by typing

g2m --help

2.8 Using file converters

The package OFELI contains two utility programs:

• cmesh: to convert various mesh files.

• cfield: to convert various output files.

These conversions allow to use commercial (or public) mesh generators and post-processors.

2.8.1 Using cmesh

The program cmesh converts mesh files to and from the native OFELI format. The command
line of the program is:

cmesh --from <ofeli|bin|em|amd|bamg|emc2|gambit|gmsh|

netgen|tetgen|matlab|triangle>

--to <ofeli|amd|gpl|gmsh|tec|vtk|matlab>

-i <string> [-o <string>] [-n <int>] [--] [--version] [-h]

Where:

--from <ofeli|em|amd|bamg|emc2|gambit|gmsh|netgen|tetgen|matlab|triangle>

(required)

Available input formats:

17

ofeli OFELI XML mesh file *.m

em EasyMesh file *.n, *.e and *.s

bamg BAMG file *.bamg

gambit Gambit neutral file *.neu

gmsh Gmsh file *.msh

netgen Netgen files *.vol

tetgen Tetgen files *.node and *.ele

matlab Matlab file *-matlab.m

triangle Triangle files *.node and *.ele

--to <ofeli|gpl|gmsh|tec|vtk|matlab> (required)

Available output formats:

gambit Gambit Neutral file *.neu

gmsh Gmsh file *.msh

netgen Netgen file *.vol

tetgen Tetgen files *.node and *.ele

matlab Matlab file *-matlab.m

triangle Triangle files *.node and *.ele

-i <string>, --input <string>

(required) Mesh Input File

-o <string>, --output <string>

Mesh Output File

-n <int>, --nb dof <int>

Nb. of degrees of freedom per node

--version

Displays version information and exits.

-h, --help

Displays usage information and exits.

Here above, the invoked programs and file formats are the following:

• ofeli is the actual OFELI XML format defined in OFELI.

• EasyMesh is a free program that generates two dimensional, unstructured, Delaunay and
constrained Delaunay triangulations in general domains. It can be downloaded from the site
http://www-dinma.univ.trieste.it/nirftc/research/easymesh

• Gnuplot is a command-line driven program for producing 2D and 3D plots. It is under the
GNU General Public License. Available information can be found in the site
http://www.gnuplot.info/

• BAMG is a 2–D mesh generator. It allows to construct adapted meshes from a given metric.
It was developed at INRIA, France. Available information can be found in the site
http://www-rocq1.inria.fr/gamma/cdrom/www/bamg/eng.htm

• Gambit is a commercial mesh generator. Available information can be found in the site
http://fluent.com/software/gambit/

• Gmsh is a free three-dimensional finite element mesh generator with built-in pre- and post-
processing facilities. It can be downloaded from the site
http://www.geuz.org/gmsh/

• Tecplot is high quality post graphical commercial processing program developed by Amtec.
Available information can be found in the site
http://www.tecplot.com

18

• Tetgen is a free three-dimensional Delaunay tetrahedral mesh generator developed by Hang
Si (E-mail: si@wias-berlin.de). Available information can be found in the site
http://tetgen.berlios.de/

• Triangle is a powerful two-dimensional Delaunay mesh generator developed by Jonathan
Richard Shewchuk (E-mail: jrs@cs.berkeley.edu). Available information can be found
in the site
http://www.cs.cmu.edu/~quake/triangle.html

• Matlab is a language of scientific computing including visualization. It is developed by
MathWorks. Available information can be found in the site
http://www.mathworks.com/products/matlab/

• VTK is an open source library of graphical processing. It is developed by Kitware. Graphical
postprocessing can be obtained by software Paraview. Available information on Paraview

can be downloaded from the site
http://www.paraview.org

• The optional argument is an integer that defines the (constant) number of degrees of freedom
per node. This information is indeed not always available from mesh generators and is needed
in ofeli format. Its default value is 1.

2.8.2 Using cfield

The program cfield converts OFELI XML field files to other formats. The command line of the
program is:

cfield -f<gmsh|gpl|tec|vtk> -m <string> -i <string> [-o <string>] [--]

[--version] [-h]

where

-f <gmsh|gpl|tec|vtk>, --format <gmsh|gpl|tec|vtk>

(required)

Available output formats:

gmsh Gmsh Postprocessing File *.pos

gpl Gnuplot File *-gnuplot.dat

tec Tecplot file *-tecplot.dat

vtk vtk file *.vtk

-m <string>, --mesh <string>

(required) Mesh file name

-i <string>, --input <string>

(required) Input field file name

-o <string>, --output <string>

Output field file name

--version

Displays version information and exits.

-h, --help

Displays usage information and exits.

19

3 File Formats

OFELI data files use the XML syntax. They are valid XML documents. Input files can be given
separately or gathered in one or more files Note that old data file of OFELI can be converted by
using one of the utility programs mdf2xml or fdf2xml contained in the package.

A typical set of header lines of OFELI XML files is the following lines:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<OFELI_File>

<info>

<title></title>

<date></date>

<author></author>

</info>

...

...

</OFELI_File>

The tags title, date and author can be filled in order to keep useful information for a user.

After the preamble given by the element <info>, the XML file can contain any of the following
elements in any order:

Project To describe project data: parameters, input and output files, . . .

This information enables constructing the class IPF

Domain To describe domain geometry

Mesh To describe mesh data

Prescription To describe prescription of boundary conditions, body and boundary forces, . . .

Material To describe material data

Field To describe input and output field data.

3.1 Element: Project

The element Project enables giving various parameters to control program execution as well
as various file names. All acquired data are used to construct the class IPF. When invoking this
element, one must supply the attribute that gives the projects name as follows:

<Project name="project_name">

...

...

</Project>

The element Project has a large choice of subelements. Each subelement is a parameter that can
be retrieved by calling a member function of class IPF. These parameters either have a predefined
name, e.g. max time that clearly chooses the maximal time for computations and whose is
retrieved in the class IPF by the member function getMaxTime, or by a generic parameter for
which a user can define a label. For instance, in the line

<parameter label="deltat" value="0.1"/>

the read parameter is retrieved by the code line

dt = ipf.getDouble("deltat");

or equivalently

ipf.get("deltat",dt);

the read parameter is retrieved by the code line

double dt = ipf.getDouble("deltat");

or equivalently

ipf.get("deltat",dt);

where ipf is an instance of class IPF.

The following table describes the list of parameters in the Prescription file:

– verbose: Level for information output. Typically, the integer number must be between 1
and 10. Its default value is 1.

– output: Level for solution output. Its default value is 0.

– save: Level for solution saving in file. Its default value is 0.

– Prescription: To describe prescription of boundary conditions, body and boundary
forces, . . .

– Material: To describe material data.

– Field: To describe input and output field data.

– save: Level for solution saving in file. Its default value is 0.

– plot: An integer that defines a level for solution saving in plot file. Its default value is 0.

– bc: Flag for boundary condition (Dirichlet) handling.

• = 1: Boundary condition is described in a prescription XML file (Default value).

• = 2: Boundary condition vector is in an XML field file.

– bf: Flag for body force handling.

• = 1, Body force is described in a prescription XML file (Default value).

• = 2, Body force vector is in a XML field file.

– sf: Flag for surface force (Neumann boundary condition) handling.

• = 1, Surface force vector in a prescription XML file,

• = 2, Read surface force vector in a XML field file.

– max time, A real number that defines maximal time for a time dependent calculation. Its
default value is 1.0.

– time step: Time step for a time dependent calculation. Its default value is 0.1.

– nb steps: Number of time steps for a time dependent calculation. Its default value is 10.

– nb iter: Maximum number of iterations for an iterative scheme. Its default value is 100.

– tolerance: Tolerance for convergence for an iterative scheme. Its default value is 1.e-6.

– integer: An integer parameter that can be retrieved by the member function getInt-
Par(i).

21

– double: A double precision parameter that can be retrieved by the member function.
getDoublePar(i) where i is the rank of appearance of this keyword. Up to 10 double
precision parameters can be contained in the file. This maximal number is defined by the
constant MAX NB PAR in the OFELI constants.

– complex: A complex parameter that can be retrieved by the member function. get-
ComplexPar(i) where i is the rank of appearance of this keyword. Up to 10 complex
parameters can be contained in the file. This maximal number is defined by the constant
MAX NB PAR in the OFELI constants.

– mesh file: Name of file that contains mesh data.

– init file: Name of file that contains initial data in XML format.

– restart file: Name of file that contains restarting field file in XML format. This file
is useful when an iteration process (or time stepping procedure) is used and the programs
stops to restart later

– bc file: Name of file that contains (Dirichlet) boundary condition data in XML format.

– bf file: Name of file that contains body force initial data in XML format.

– sf file: Name of file that contains surface force data in XML format.

– save file: Name of file that fields to save in XML format.

– plot file: Name of file that contains fields to plot in XML format.

– data file: Name of file that contains various data in XML format.

– aux file: Name of file that contains any other data in any format. Any occurrence
of this keyword will define a new file name that can be retrieved through the member
function getAuxFile(i) where i is the rank of the appearance of this keyword. Up to
10 occurrences can be contained in the file. This maximal number is defined by the constant
MAX NB PAR in the OFELI constants.

– parameter: As explained in the example above, this subelement must contain an option
called label that identifies the parameters and then optionally the option value to specify a
value. If this option is not present, a value must be given before closing the subelement

Note that the argument of each subelement can be given either through the attribute value or
through a value that given between the opening and the closing of the subelement.

Let us give a simple example of XML file using the Project element, where we have used both
possibilities of defining subelements.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<OFELI_File>

<info>

<title>Project file</title>

<date>August 18, 2008</date>

<author>R. Touzani</author>

</info>

<Project name="beam">

<mesh_file>beam.m</mesh_file>

<data_file>beam.pr</data_file>

<parameter label="d-file">beam.d</parameter>

<parameter label="density" value="1.2"/>

<nb_iter>100</nb_iter>

<tolerance value="1.e-5"></tolerance>

<verbose>1</verbose>

<output>1</output>

<save value="1"/>

22

<Project>

</OFELI_File>

3.2 Element: Domain

The element Domain enables defining a domain geometry. At the current stage of development
of OFELI, a domain definition is necessary to generate meshes in the 2-D configurations. This
element has 2 attributes:

• The attribute dim defines the space dimension. Typically, 1, 2 or 3. Its default value is 2.

• The attribute nb dof defines the number of degrees of freedom on any unknown support.
For instance, if unknowns are supported by nodes, one can specify that each node supports
2 degrees of freedom for a planar elasticity problem. The default value of this parameter is
1.

An example of use of this element is:

<Domain dim="2">

<vertex> 0. 0. 1 0.1 </vertex>

<vertex> 1. 0. 1 0.1 </vertex>

<vertex> 1. 1. 1 0.1 </vertex>

<vertex> 0. 1. 1 0.1 </vertex>

<vertex> 0. 5 0.5 2 0.1 </vertex>

<vertex> 0. 6 0.5 2 0.1 </vertex>

<line> 1 2 -2 </line>

<line> 2 3 -2 </line>

<line> 3 4 -2 </line>

<line> 4 1 -2 </line>

<circle> 6 6 5 1 </circle>

<subdomain> 1 1 10 </subdomain>

</Domain>

Let us describe the subelements of element Domain:

– vertex: To describe a vertex in the domain. This subelement describes a vertex by the
following data:

x y h c

where x and y are the vertex coordinates, h is the mesh size around the vertex and c is
the code to assign to the vertex. This code will be transferred to the vertex once a mesh is
generated.

– line: To describe a straight line that joins 2 vertices. This subelement describes a straight
line by the following data:

n1 n2 cc

where the line goes from vertex n1 to vertex n2 and cc is the code to assign to the nodes
generated. Note that line is actually oriented from n1 to n2.

– circle: To describe a circular arc. This subelement describes a circular arc by the following
data:

n1 n2 n3 cc

where the arc goes from vertex n1 to vertex n2. Note that we can have n1=n2 which in
this case generates an entire circle. The center of the circle is located at vertex n3. The
integer cc stands for the code to assign to nodes generated on the line (Dirichlet) if cc>0
and to sides generated on the line (Neumann) if cc<0.

23

– contour: To describe a contour (a closed connection of lines). This subelement describes
a contour arc by the following data:

l1 l2 ... ln

Here the contour is given by the consecutive lines l1 to ln. These lines must be given in
the direct orientation (counter clockwise).

– hole: To describe a hole (an internal contour). This subelement describes a hole by the
following data:

l1 l2 ... ln

Here the hole is a contour given by the consecutive lines l1 to ln. These lines must be
given in the clockwise orientation.

– subdomain: To describe a subdomain with a specific code. This subelement describes a
circular arc by the following data:

n c

where n is the label of the contour that describes the subdomain and c is a code (integer
number) to associate to the subdomain.

3.3 Element: Mesh

The element Mesh enables providing data that describe a finite element mesh. It has 2 optional
attributes:

• The attribute dim defines the space dimension. Typically, 1, 2 or 3. Its default value is 2.

• The attribute nb dof defines the number of degrees of freedom on any unknown support.
For instance, if unknowns are supported by nodes, one can specify that each node supports
2 degrees of freedom for a planar elasticity problem. The default value of this parameter is
1.

An example of use of this element is:

<Mesh dim="3" nb_dof="2">

...

...

</Mesh>

This element has the following subelements:

– Nodes: To describe nodes. This subelement enables defining each node data. Typically, it
can be used as follows:

<Nodes>

x1 y1 z1 c1 x2 y2 z2 c2 x3 y3 z3 c3

x4 y4 z4 c4 ...

...

... ... xn yn zn cn

</Nodes>

More precisely, each node is given by its coordinates. In this example, a 3-D problem requires
three coordinates. For a 2-D problem only x and y–coordinates are required. The coordinates
are followed by an integer number that describes a code to associate to the node. This code
is used to prescribe boundary conditions. It is important to mention that any nonzero code
enforces a boundary condition of a given DOF (Degree Of Freedom). By convention, this
code is chosen such that it has as many digits as the number of DOF for the node. For
instance if the number of DOF of a node is 3, then a code of 231 yields a code 1 for the
first DOF, 3 for the second DOF and 2 for the third one.

24

Another important thing to note is that the nodes are given in a free format one after the
other. Moreover, the number of nodes doesn’t have to be specified. The parser deduces it
from the list size.

– Elements: To describe elements. This subelement enables defining the finite elements. It
has the following attributes:

• The attribute shape specifies the shape of the finite element. It must take one
of the following values: line, triangle or tria, quadrilateral or quad,
tetrahedron or tetra, and hexahedron or hexa. The default value is line
for 1-D, triangle for 2-D and tetrahedron for 3-D.

• The attribute nodes is the number of element nodes. Its default value is 2 for 1-D,
3 for 2-D, and 4 for 3-D.

A typical example of subelement Elements is the following:

<Elements shape="triangle" nodes="3">

1 2 5 1 2 3 5 1

3 4 5 1 4 1 5 1

</Elements>

<Elements shape="quadrilateral" nodes="4">

2 6 7 3 2

</Elements>

Note that the elements are grouped shape by shape.

More precisely, for each element are given:

• The list of its nodes. Their number is given by the attribute nodes or by its default
value.

• An integer number that stands for its code. This code is helpful to specify the material
in which lies the element. It can also be used for any other purpose to select lists of
elements.

Note that the number of elements doesn’t have to be specified. The parser deduces it from
the list size.

– Sides: To describe sides. This subelement enables defining sides (edges in 2-D, faces in
3-D) in a finite element mesh. It has the following attributes:

• The attribute shape specifies the shape of the side. It must take one of the following
values: line, triangle or tria, quadrilateral or quad. The default value
is line for 2-D and triangle for 3-D.

• The attribute nodes is the number of side nodes. Its default value is 2 for 2-D and 3
for 3-D.

A typical example of subelement Sides is the following:

<Sides shape="line" nodes="2">

1 2 1 2 3 1

</Sides>

Note that the sides are grouped shape by shape.

More precisely, for each side are given:

• The list of its nodes. Their number is given by the attribute nodes or by its default
value.

• An integer number that stands for its code. This code plays the same role as for nodes.

Note that the number of sides doesn’t need be specified. The parser deduces it from the list
size.

25

– Material: To describe materials for elements. This subelement Material enables at-
tributing a material to each element code. Element codes are given as integers in the
Elements section. If no material is associated to a code, the library assigns a so-called
Generic material with default physical properties. This is to be used for testing purposes.
For a realistic use of the library, each material is defined through its properties by an XML
file. For instance, the material Iron is defined in the file Iron.md. Depending on the
stage of development of the library, number of material files are already present. The element
Material enables defining a user’s material.

A typical example of subelement Material is the following:

<Material>

1 Rubber

5 Copper

</Material>

More precisely, each material is given by an integer that is the code and a string that is
the material name. Either the material file exists in the given list of OFELI materials (here
files Rubber.md and Copper.md), or the user provides in his own directory the required
material file.

3.4 Element: Prescription

This element encloses information on conditions to prescribe for the numerical solution by the
OFELI library. We mean here by prescription, enforcement of boundary conditions (Dirichlet),
Boundary forces (Neumann boundary conditions, Body forces (right-hand side of equations, initial
condition, . . .) To each type of prescription corresponds a subelement. Moreover, prescription of
variable (time and/or space dependent) conditions are allowable through algebraic equations.

The element Prescription doesn’t have any attribute. It has the following subelements:

– BoundaryCondition: To prescribe (essential or Dirichlet) boundary conditions. This
subelement enables prescribing a Dirichlet boundary condition. A typical example of its use
is:

<BoundaryCondition code="1" dof="2">x*exp(t)</BoundaryCondition>

More precisely, this subelement has the following attributes:

• The attribute code specifies the code for which the boundary condition is assigned.
For example, if the degrees of freedom are supported by nodes, this code is the one
associated to nodes.

• The attribute dof specifies the degree of freedom index to which the boundary condi-
tion is assigned. If this attribute is not present, the condition is enforced to all dofs’.

– BodyForce: To prescribe body forces or sources, . . . This subelement enables prescribing
the volume right-hand side of the partial differential equation (Domain integral in the vari-
ational formulation). Depending on the problem origin, this one can be called Body Force,
Load, Source, . . .

A typical example of its use is:

<BodyForce dof="2">1.0</BodyForce>

As it can be remarked, this subelement works like BoundaryCondition except the at-
tribute code which has no meaning in this context.

– Source: Identical to BodyForce.

– BoundaryForce: To prescribe boundary forces (Neumann boundary conditions), like trac-
tions, fluxes, . . . This subelement enables prescribing the surface right-hand side of the partial

26

differential equation (Boundary integral in the variational formulation or Neumann condi-
tion). Depending on the problem origin, this one can be called Boundary Force, Traction,
Flux, . . .

A typical example of its use is:

<BoundaryForce code ="5" dof="2">x-y</BoundaryForce>

As it can be remarked, this subelement works like BoundaryCondition, The difference
being that this condition is generally applied to sides (edges or faces) whereas the Dirichlet
boundary condition applies generally to nodes.

– Traction: Identical to BoundaryForce.

– Flux: Identical to BoundaryForce.

– Initial: To prescribe an initial condition. This subelement enables prescribing an initial
condition for a time-dependent problem or an initial solution for an iterative process.

A typical example of its use is:

<Initial dof="1">(1.0+sin(x))*exp(-t)</Initial>

As it can be remarked, this subelement works like BodyForce for instance.

3.5 Element: Material

Material data are stored in specific XML files. Each file corresponds to a given material. The
OFELI library contains a collection of material files that will be enriched in the forthcoming
releases.

In OFELI, the material named Mat is described in the XML file: Mat.md Let us give as example
the material file for the material Copper. Here is the listing of the file Copper.md the

<?xml version="1.0" encoding="ISO-8859-1" ?>

<OFELI_File>

<info>

<title>Material data for Copper</title>

<date></date>

<author></author>

</info>

<Material name="Copper">

<Density>1.</Density>

<SpecificHeat>8920.</SpecificHeat>

<ThermalConductivity>401.</ThermalConductivity>

<ElectricConductivity>5.9302e07</ElectricConductivity>

<ElectricResistivity>1.6863e-8</ElectricResistivity>

<MagneticPermeability>12.566371e-7</MagneticPermeability>

<PoissonRatio>0.34</PoissonRatio>

<YoungModulus>15.e10</YoungModulus>

</Material>

</OFELI_File>

The structure of this file doesn’t need any additional explanation. We shall however give hereafter
the list of properties that can be stored in the XML file:

� Density: Density of material (Heat and Mass Transfer).

� SpecificHeat: Specific Heat (Heat Transfer).

� ThermalConductivity: Thermal Conductivity (Heat Transfer).

� MeltingTemperature: Melting Temperature (Heat Transfer).

27

� EvaporationTemperature: Evaporation Temperature (Heat Transfer).

� ThermalExpansion: Thermal Expansion (Heat and Mass Transfer).

� LatentHeatMelting: Latent Heat for Melting (Heat Transfer).

� LatentHeatEvaporation: Latent Heat for Evaporation (Heat Transfer).

� DielectricConstant: Dielectric Constant (Electromagnetism).

� ElectricConductivity: Electric Conductivity (Electromagnetism).

� ElectricResistivity: Electric Resistivity: Inverse of Conductivity.

� MagneticPermeability: Magnetic Permeability (Electromagnetism).

� Viscosity: Kinematic Viscosity (Fuid Dynamics).

� YoungModulus: Young Modulus (Solid Mechanics).

� PoissonRatio: Poisson Ratio (Solid Mechanics).

3.6 Element: Field

The element Field is useful to store vectors, such as input vectors, results. We have grouped
all these vectors under the term Field. The XML field file that contains these vectors can be
transformed via conversion programs to various file formats for well known free and commercial
graphical postprocessors.

Fields can be divided into 3 types depending on the degree of freedom support: Fields can be
given by nodes, elements or sides. In addition, in view of handling time-dependent problems, the
XML file can contain as many vectors as necessary, each one corresponding to a given time step.

A typical XML file containing fields looks like this

<OFELI_File>

...

<Field name="Temperature" type="Node" nb_dof="1">

<Step time="0.1">

... ...

... ...

</Step>

<Step time="0.2">

... ...

... ...

</Step>

</Field>

<Field name="Displacement" type="Element" nb_dof="2">

<Step time="0.1">

<constant dof="1">1.0</constant>

<expression dof="2">x*exp(t)</expression>

</Step>

</Field>

</OFELI_File>

More precisely, the element Field has the attributes:

• The attribute name specifies the name to give to the field. This attribute is optional.

• The attribute type specifies the type of the field. It must take one of the values: Node,
Element or Side. The default value is Node.

• The attribute nb dof gives the number of degrees of freedom for one support, e.g. if the
type is Node, there are nb dof values per node. The default value of this attribute is 1.

28

– The element Field has only one subelement: Step.

– The subelement Step gives the vector entries for the specified value of the attribute time.
It owns two subelements:

• The element constant enables assigning a constant value to all vector components
for one given dof or all dofs. It has the attribute dof that can specify the dof to be
assigned. By default, all dofs are assigned this constant value.

• The element expression enables assigning an algebraic expression that may involve
the coordinates x, y, z and the time t, to all vector components for one given dof or
all dofs. It has the attribute dof that can specify the dof to be assigned. By default,
all dofs are assigned this expression.

3.7 Element: Function

The element Function defines a tabulated function of one, two or three variables. In order
to minimize computational cost, each variable is defined by a uniform partitioning given by its
minimal value, its maximal values and the number of grid points. This element has as unique
attribute the name of the function.

A typical usage of this element is:

<Function name="Density">

<Variable label="x" nb_pts="5" min="0" max="1"/>

<Variable label="y" nb_pts="4" min="10" max="12"/>

<Data>

1.0 2.0 5.0 7.0

2.0 3.0 5.0 8.0

7.0 2.0 5.0 9.0

0.0 2.0 8.0 10.0

11.0 20.0 25.0 30.0

</Data>

</Function>

Let us describe the subelements of element Function:

� Variable: To describe a variable

� Data: To give list of function values?

The subelement Variable describes a variable. Its attributes are:

• The attribute label gives a name to the variable. This name has no particular usage. Only
the order of the variables is important for a function evaluation.

• The attribute nb pts gives the number of grid points for this variable, i.e. This is the
number of grid intervals plus one.

• The attribute min gives the minimal value of the variable.

• The attribute max gives the maximal value of the variable.

• The subelement Data gives the function values ordered as follows (This is an example of a
function of 2 variables):

val(1,1) val(1,2) ... val(1,n2)

val(2,1) val(2,2) ... val(2,n2)

...

val(n1,1) val(n1,2) ... val(n1,n2)

where n1 and n2 are the number of points for the first and second variable respectively.

29

4 Debugging

The OFELI library is equipped with some simple tools to help debugging and tracking errors. For
a large size finite element code using OFELI this may not be sufficient to detect all troubles but
may help find some ones. The simplest method to track errors is to use compiler directives to
check some inconsistencies.

4.1 Debugging directives

Two macros are defined to check array bounds :

• Activating the macro OFELI DEBUG enables outputting a message each time a class con-
structor or destructor is called. The file name and the line number in the class implementation
file are also given.

• Activating the macro BOUNDS DEBUG enables checking the bounds of each vector each
time these ones are invoked.

	Generalities
	A Tutorial
	A One Dimensional Problem
	The main code
	An Example

	A Two–dimensional steady–state diffusion equation
	The Finite Element Code
	A finite element mesh

	Using an iterative solver
	The Finite Element Code
	A test

	A time dependent problem
	The Finite Element Code
	A test

	An optimization problem
	The Finite Element Code
	A test

	Using Project File
	Using mesh generator
	Using file converters
	Using srccmesh
	Using srccfield

	File Formats
	Element: srcProject
	Element: srcDomain
	Element: srcMesh
	Element: srcPrescription
	Element: srcMaterial
	Element: srcField
	Element: srcFunction

	Debugging
	Debugging directives

	Index

