Let us run this program with an example of a straight bar [0,1].
We define the project file:
<?xml version="1.0" encoding="ISO-8859-1" ?>
<OFELI_File>
<info>
<title />
<date />
<author />
</info>
<Project name="beam">
<mesh_file value="beam.dat"/>
<data_file value="beam.dat" />
<verbose value="1" />
<output value="0">
<save value="1"/>
<plot value="1"/>
<init value="1"/>
<plot_file value="beam.d"/>
</Project>
<Mesh dim="3" nb_dof="6">
<Nodes>
0.00000000e+00 0.00000000e+00 0.00000000e+00 111111
1.25000000e-01 0.00000000e+00 0.00000000e+00 0
2.50000000e-01 0.00000000e+00 0.00000000e+00 0
3.75000000e-01 0.00000000e+00 0.00000000e+00 0
5.00000000e-01 0.00000000e+00 0.00000000e+00 0
6.25000000e-01 0.00000000e+00 0.00000000e+00 0
7.50000000e-01 0.00000000e+00 0.00000000e+00 0
8.75000000e-01 0.00000000e+00 0.00000000e+00 0
1.00000000e+00 0.00000000e+00 0.00000000e+00 0
</Nodes>
<Elements shape="line" nodes="2">
1 2 1 2 3 1
3 4 1 4 5 1
5 6 1 6 7 1
7 8 1 8 9 1
</Elements>
</Mesh>
<Prescription>
<PointForce x="1" dof="2">-0.01</PointForce>
<PointForce x="1" dof="3"> 0.01</PointForce>
</Prescription>
</OFELI_File>
|
Let us give some explanations about this project file:
- The project file contains all data necessary for the code: General problem parameters,
mesh data and prescriptions.
- The finite element mesh consists in 8 beam elements, where the first node (x=0)
has all its degrees of freedom constrained.
- We impose a load concentrated at the end point (x=1): The degrees
of freedom 2 and 3 are loaded. Note that since we don't prescribe any boundary condition, then
by default, the first end (x=0) is fixed.