Equa_Therm< NEN_, NEE_, NSN_, NSE_ > Class Template Reference

Abstract class for Heat transfer Finite Element classes. More...

#include <Equa_Therm.h>

Inheritance diagram for Equa_Therm< NEN_, NEE_, NSN_, NSE_ >:
Equation< NEN_, NEE_, NSN_, NSE_ > Equa

Public Member Functions

 Equa_Therm ()
 Default constructor.
 
virtual ~Equa_Therm ()
 Destructor.
 
virtual void setStab ()
 Set stabilized formulation.
 
virtual void LCapacity (real_t coef=1)
 Add lumped capacity contribution to element matrix.
 
virtual void Capacity (real_t coef=1)
 Add consistent capacity contribution to left-hand side.
 
virtual void Diffusion (real_t coef=1.)
 Add diffusion term to element matrix.
 
virtual void Convection (real_t coef=1.)
 Add convection term to element matrix.
 
virtual void BodyRHS (const Vect< real_t > &f)
 Add body right-hand side term to right-hand side.
 
virtual void BoundaryRHS (const Vect< real_t > &f)
 Add boundary right-hand side term to right-hand side.
 
void build ()
 Build the linear system of equations.
 
void build (TimeStepping &s)
 Build the linear system of equations.
 
void build (EigenProblemSolver &e)
 Build the linear system for an eigenvalue problem.
 
void setRho (const real_t &rho)
 Set Density (constant)
 
void setCp (const real_t &cp)
 Set Specific heat (constant)
 
void setConductivity (const real_t &diff)
 Set (constant) thermal conductivity.
 
- Public Member Functions inherited from Equation< NEN_, NEE_, NSN_, NSE_ >
 Equation ()
 
 Equation (Mesh &mesh)
 Constructor with mesh instance.
 
 Equation (Mesh &mesh, Vect< real_t > &u)
 Constructor with mesh instance and solution vector.
 
 Equation (Mesh &mesh, Vect< real_t > &u, real_t &init_time, real_t &final_time, real_t &time_step)
 Constructor with mesh instance, matrix and right-hand side.
 
 ~Equation ()
 Destructor.
 
void updateBC (const Element &el, const Vect< real_t > &bc)
 Update Right-Hand side by taking into account essential boundary conditions.
 
void DiagBC (DOFSupport dof_type=NODE_DOF, int dof=0)
 Update element matrix to impose bc by diagonalization technique.
 
void LocalNodeVector (Vect< real_t > &b)
 Localize element vector from a Vect instance.
 
void ElementNodeVector (const Vect< real_t > &b, LocalVect< real_t, NEE_ > &be)
 Localize element vector from a Vect instance.
 
void SideNodeVector (const Vect< real_t > &b, LocalVect< real_t, NSE_ > &bs)
 Localize side vector from a Vect instance.
 
void SideSideVector (const Vect< real_t > &b, vector< real_t > &bs)
 Localize side vector from a Vect instance.
 
void ElementNodeVectorSingleDOF (const Vect< real_t > &b, LocalVect< real_t, NEN_ > &be)
 Localize Element Vector from a Vect instance.
 
void ElementNodeVector (const Vect< real_t > &b, LocalVect< real_t, NEN_ > &be, int dof)
 Localize Element Vector from a Vect instance.
 
void ElementSideVector (const Vect< real_t > &b, LocalVect< real_t, NSE_ > &be)
 Localize Element Vector from a Vect instance.
 
void ElementVector (const Vect< real_t > &b, DOFSupport dof_type=NODE_DOF, int flag=0)
 Localize element vector.
 
void SideVector (const Vect< real_t > &b, vector< real_t > &sb)
 Localize side vector.
 
void ElementNodeCoordinates ()
 Localize coordinates of element nodes.
 
void SideNodeCoordinates ()
 Localize coordinates of side nodes.
 
void ElementAssembly (Matrix< real_t > *A)
 Assemble element matrix into global one.
 
void ElementAssembly (BMatrix< real_t > &A)
 Assemble element matrix into global one.
 
void ElementAssembly (SkSMatrix< real_t > &A)
 Assemble element matrix into global one.
 
void ElementAssembly (SkMatrix< real_t > &A)
 Assemble element matrix into global one.
 
void ElementAssembly (SpMatrix< real_t > &A)
 Assemble element matrix into global one.
 
void ElementAssembly (TrMatrix< real_t > &A)
 Assemble element matrix into global one.
 
void DGElementAssembly (Matrix< real_t > *A)
 Assemble element matrix into global one for the Discontinuous Galerkin approximation.
 
void DGElementAssembly (SkSMatrix< real_t > &A)
 Assemble element matrix into global one for the Discontinuous Galerkin approximation.
 
void DGElementAssembly (SkMatrix< real_t > &A)
 Assemble element matrix into global one for the Discontinuous Galerkin approximation.
 
void DGElementAssembly (SpMatrix< real_t > &A)
 Assemble element matrix into global one for the Discontinuous Galerkin approximation.
 
void DGElementAssembly (TrMatrix< real_t > &A)
 Assemble element matrix into global one for the Discontinuous Galerkin approximation.
 
void SideAssembly (Matrix< real_t > *A)
 Assemble side (edge or face) matrix into global one.
 
void SideAssembly (SkSMatrix< real_t > &A)
 Assemble side (edge or face) matrix into global one.
 
void SideAssembly (SkMatrix< real_t > &A)
 Assemble side (edge or face) matrix into global one.
 
void SideAssembly (SpMatrix< real_t > &A)
 Assemble side (edge or face) matrix into global one.
 
void ElementAssembly (Vect< real_t > &v)
 Assemble element vector into global one.
 
void SideAssembly (Vect< real_t > &v)
 Assemble side (edge or face) vector into global one.
 
void AxbAssembly (const Element &el, const Vect< real_t > &x, Vect< real_t > &b)
 Assemble product of element matrix by element vector into global vector.
 
void AxbAssembly (const Side &sd, const Vect< real_t > &x, Vect< real_t > &b)
 Assemble product of side matrix by side vector into global vector.
 
size_t getNbNodes () const
 Return number of element nodes.
 
size_t getNbEq () const
 Return number of element equations.
 
real_t setMaterialProperty (const string &exp, const string &prop)
 Define a material property by an algebraic expression.
 
- Public Member Functions inherited from Equa
 Equa ()
 Default constructor.
 
virtual ~Equa ()
 Destructor.
 
void setMesh (Mesh &m)
 Define mesh and renumber DOFs after removing imposed ones.
 
MeshgetMesh () const
 Return reference to Mesh instance.
 
LinearSolvergetLinearSolver ()
 Return reference to linear solver instance.
 
Matrix< real_t > * getMatrix () const
 Return pointer to matrix.
 
void setSolver (Iteration ls, Preconditioner pc=IDENT_PREC)
 Choose solver for the linear system.
 
void setMatrixType (int t)
 Choose type of matrix.
 
int solveLinearSystem (Matrix< real_t > *A, Vect< real_t > &b, Vect< real_t > &x)
 Solve the linear system with given matrix and right-hand side.
 
int solveLinearSystem (Vect< real_t > &b, Vect< real_t > &x)
 Solve the linear system with given right-hand side.
 
void LinearSystemInfo ()
 Print info on linear system solver.
 

Protected Member Functions

void setMaterial ()
 Set material properties.
 

Detailed Description

template<size_t NEN_, size_t NEE_, size_t NSN_, size_t NSE_>
class OFELI::Equa_Therm< NEN_, NEE_, NSN_, NSE_ >

Abstract class for Heat transfer Finite Element classes.

Template Parameters
<NEN>Number of element nodes
<NEE_>Number of element equations
<NSN_>Number of side nodes
<NSE_>Number of side equations

Constructor & Destructor Documentation

◆ Equa_Therm()

template<size_t NEN_, size_t NEE_, size_t NSN_, size_t NSE_>
Equa_Therm ( )

Default constructor.

Constructs an empty equation.

Member Function Documentation

◆ BodyRHS()

template<size_t NEN_, size_t NEE_, size_t NSN_, size_t NSE_>
virtual void BodyRHS ( const Vect< real_t > &  f)
virtual

Add body right-hand side term to right-hand side.

Parameters
[in]fVector containing source at nodes.

Reimplemented in DC1DL2, DC2DT3, DC2DT6, DC3DAT3, and DC3DT4.

◆ BoundaryRHS()

template<size_t NEN_, size_t NEE_, size_t NSN_, size_t NSE_>
virtual void BoundaryRHS ( const Vect< real_t > &  f)
virtual

Add boundary right-hand side term to right-hand side.

Parameters
[in]fVector containing source at nodes.

Reimplemented in DC2DT3, DC2DT6, DC3DAT3, and DC3DT4.

◆ build() [1/3]

template<size_t NEN_, size_t NEE_, size_t NSN_, size_t NSE_>
void build ( )

Build the linear system of equations.

Before using this function, one must have properly selected appropriate options for:

  • The choice of a steady state or transient analysis. By default, the analysis is stationary
  • In the case of transient analysis, the choice of a time integration scheme and a lumped or consistent capacity matrix. If transient analysis is chosen, the lumped capacity matrix option is chosen by default, and the implicit Euler scheme is used by default for time integration.

◆ build() [2/3]

template<size_t NEN_, size_t NEE_, size_t NSN_, size_t NSE_>
void build ( EigenProblemSolver e)

Build the linear system for an eigenvalue problem.

Parameters
[in]eReference to used EigenProblemSolver instance

◆ build() [3/3]

template<size_t NEN_, size_t NEE_, size_t NSN_, size_t NSE_>
void build ( TimeStepping s)

Build the linear system of equations.

Before using this function, one must have properly selected appropriate options for:

  • The choice of a steady state or transient analysis. By default, the analysis is stationary
  • In the case of transient analysis, the choice of a time integration scheme and a lumped or consistent capacity matrix. If transient analysis is chosen, the lumped capacity matrix option is chosen by default, and the implicit Euler scheme is used by default for time integration.
Parameters
[in]sReference to used TimeStepping instance

◆ Capacity()

template<size_t NEN_, size_t NEE_, size_t NSN_, size_t NSE_>
virtual void Capacity ( real_t  coef = 1)
virtual

Add consistent capacity contribution to left-hand side.

Parameters
[in]coefcoefficient to multiply by the matrix before adding [Default: 1]

Reimplemented in DC1DL2, DC2DT3, DC2DT6, DC3DAT3, and DC3DT4.

◆ LCapacity()

template<size_t NEN_, size_t NEE_, size_t NSN_, size_t NSE_>
virtual void LCapacity ( real_t  coef = 1)
virtual

Add lumped capacity contribution to element matrix.

Parameters
[in]coefcoefficient to multiply by the matrix before adding [Default: 1]

Reimplemented in DC1DL2, DC2DT3, DC2DT6, DC3DAT3, and DC3DT4.

◆ setStab()

template<size_t NEN_, size_t NEE_, size_t NSN_, size_t NSE_>
virtual void setStab ( )
virtual

Set stabilized formulation.

Stabilized variational formulations are to be used when the Péclet number is large.
By default, no stabilization is used.